Random Partition Models with Regression on Covariates.
نویسندگان
چکیده
Many recent applications of nonparametric Bayesian inference use random partition models, i.e. probability models for clustering a set of experimental units. We review the popular basic constructions. We then focus on an interesting extension of such models. In many applications covariates are available that could be used to a priori inform the clustering. This leads to random clustering models indexed by covariates, i.e., regression models with the outcome being a partition of the experimental units. We discuss some alternative approaches that have been used in the recent literature to implement such models, with an emphasis on a recently proposed extension of product partition models. Several of the reviewed approaches were not originally intended as covariate-based random partition models, but can be used for such inference.
منابع مشابه
A Product Partition Model With Regression on Covariates.
We propose a probability model for random partitions in the presence of covariates. In other words, we develop a model-based clustering algorithm that exploits available covariates. The motivating application is predicting time to progression for patients in a breast cancer trial. We proceed by reporting a weighted average of the responses of clusters of earlier patients. The weights should be ...
متن کاملBayesian Clustering with Regression
We propose a model for covariate-dependent clustering, i.e., we develop a probability model for random partitions that is indexed by covariates. The motivating application is inference for a clinical trial. As part of the desired inference we wish to define clusters of patients. Defining a prior probability model for cluster memberships should include a regression on patient baseline covariates...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملPrediction of mental disorders after Mild Traumatic Brain Injury: principle component Approach
Introduction: In Processes Modeling, when there is relatively a high correlation between covariates, multicollinearity is created, and it leads to reduction in model's efficiency. In this study, by using principle component analysis, modification of the effect of multicolinearity in Artificial Neural Network (ANN) and Logistic Regression (LR) has been studied. Also, the effect of multicolineari...
متن کاملConfidence Sets for Network Structure
Latent variable models are frequently used to identify structure in dichotomous network data, in part because they give rise to a Bernoulli product likelihood that is both well understood and consistent with the notion of exchangeable random graphs. In this article we propose conservative confidence sets that hold with respect to these underlying Bernoulli parameters as a function of any given ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of statistical planning and inference
دوره 140 10 شماره
صفحات -
تاریخ انتشار 2010